If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+12p-10=0
a = 2; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·2·(-10)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{14}}{2*2}=\frac{-12-4\sqrt{14}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{14}}{2*2}=\frac{-12+4\sqrt{14}}{4} $
| 3x+4=5×-12 | | 10=1/3(6x-18) | | 16+z=18 | | 2+49x+40x=180 | | 2x^2=11-10 | | 15=18-2k-31 | | 4=-3(2z+2)+7z | | 11-x+21=180 | | 3x+6+24°=3x+6 | | 5x+23-2x=50 | | 6h−3h=15 | | x-3-2=12 | | 3.1q-1.4=1.3q+6.7 | | 12=3(6+w) | | 12x+13-12x=49+6x | | 10t+17=27 | | 1=0.3a-0.7a-35 | | 38=y/2+15 | | 12=6/7v | | 3x+46+14=180 | | 18=7z+18 | | x-419.77=128.04 | | 2x-5(x=4)=-2(x+3) | | x-$419.77=$128.04 | | 7-10a-5-4a=4 | | -4a+4/3=8/3 | | x÷1.5=6 | | 5+10(x+2)=35 | | -1=r+3^2 | | 3/4=y-1/5*5 | | 4(x+7)=9 | | 2/7=1/2+a |